“Speed is the key”
Last words of many daredevils
Outline

• Litho trends
• Scaling by wavelength and process
 – 193i
 – 193 Double exposure
 – EUVL
• Process complexity and cluster productivity
Lithography Roadmap

- **45nm HP**: 193i (water)
- **32nm HP**: 193i (High index)
- **22nm HP**: EUVL 193i Double exposure
- **16nm HP**: EUVL (High NA)
- **12nm HP**: Nanoimprint, Maskless, Self assembly?

High Volume Manufacturing (ITRS)

Roadmap acceleration?

Current ITRS Roadmap
Lithographic Scaling: History

- For 193nm litho, process complexity scaling has been required at each new node even with improvements with NA.
- Over 4 technology generations, NA has improved ~1.8x while half-pitch has scaled 4X.

\[HP = k_1 \frac{\lambda}{NA} \]
Cost of Scaling: Nothing Comes for Free

- **Wavelength**
 - Lasers: 248nm -> 193nm -> 157nm -> “13nm”
 - Optics: Fused silica -> CaF$_2$ -> Mo/Si ML
 - Resist materials

- **Numerical aperture**
 - Lens size / complexity

- **Process complexity**
 - Resolution enhancements (mask complexity)
 - Illumination optimization
 - Film stack improvements
With single layer BARC, reflectivity control is impossible at hyper NA for multiple pitches. Mutilayer BARCs are required (with multiple coat steps).
Critical velocities are close to high throughput scan speeds and decrease with increasing viscosity and decreasing surface tension.
Double Patterning Steps

Dual Trench

Mask 1
- Print trenches and etch hardmask
- Strip first resist and coat and expose second resist
- Etch hardmask and strip second resist
- 2 resist coat steps
- 2 resist develop steps
- 1 additional intermediate etch

Mask 2
Process Complexity Effect on Litho Cluster

Scanner

Single exposure, low-NA

Single exposure, Immersion, hyper-NA

Double exposure, Immersion, hyper-NA

Track

- PAB
- Resist
- BARC
- PEB
- Develop
- Wafer flow

Barccoat
Resistcoat

Stage

Topcoat
Hardmask
Xferlayer
BARCcoat

PAB coat
Resist coat
BARC2 coat
BARC1 coat

PEB Develop

Scanning

Scanning Double

Scanning

Accelerating the next technology revolution.
Process Complexity: Track steps

- Process solution could require >2X more process steps

![Graph showing process complexity]

- Improve DoF and etch selectivity
- Topcoats for surface wetting control
- Hardmasks and transfer layers
Typical 193nm Track Requirements

- From Paul Luehrmann, ASML (2005)
 - Includes extra modules for throughput

<table>
<thead>
<tr>
<th></th>
<th>BARC</th>
<th>Resist Coat</th>
<th>Develop</th>
<th>TARC</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry 193nm</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low leach rate 193i</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resist + topcoat (developer soluble)</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Resist + topcoat (solvent soluble)</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Litho Cluster Productivity

Simple one process scanner/track

Lot B Lot A

Coat/PAB Expose PEB/Develop

R₁=1 wfr/min R₂=2 wfr/min R₃=1 wfr/min

n₁R₁=n₂R₂=n₃R₃

Multi-process scanner/track

Lot B Lot A

Coat/PAB Expose PEB/Develop

R₁=1 wfr/min R₂=2 wfr/min R₃=1 wfr/min

R₁ₐ=1 wfr/min R₂=2 wfr/min R₃ₐ=1 wfr/min

R₁₈=0.5 wfr/min R₃₈=1 wfr/min
High Productivity Litho Cluster

Each track step takes 1 to a few minutes per wafer
Each wafer takes <1 minutes per exposure step
Multiple coat/bake/develop stations required

Each cluster looks like a mini-fab!
Advanced material process flow required for high productivity
EUV Resist

- SEMATECH facilities demonstrate that simple film stacks are all that are needed to demonstrate resolution for EUV resists.

Images courtesy TOK and Rohm & Haas

Dose to size (50-nm 1:1) = 19 mJ/cm²

Coded 22.5-nm:67.5-nm
Actual 22.7-nm:67.5-nm
LER 4.0 nm: L = 512 nm

courtesy of Seiya Masuda, FUJIFILM

LER/LWR needs improvement!
EUV Resist Technical Issues (32 nm hp)

- Simultaneously meeting Sensitivity, Resolution, and LER requirements remains challenging

Sensitivity: 10 mJ/cm²

<5 mJ/cm² demonstrated
But LER high

~3nm is about the best LER shown anywhere

LER: 1.7nm

<28nm demonstrated, but dose is high

Resolution <32nm

- SEMATECH research is focusing on finding the ideal resist with good LER, Resolution, and Sensitivity
EUVL Resist Tradeoffs?

- Good dense line resist ~20 mJ/cm² (today)
- Low dose dense line resist ~12 mJ/cm² (today)
- Gate resist (low LER) >30 mJ/cm² (today)
- Contact hole resist >20 mJ/cm² (today)

EUVL is heavily photon limited. Optimizing resist per level may impact scanner throughput. May have to run both ~140wph and ~90wph resists on same track.
Maintaining Productivity

• Scanner
 – May run 120+ wafers/hour
 – May run 60 wafers/hour (double exposure)

• Track
 – May need 5 process modules per wafer pass
 – May need 12 process modules per wafer pass
 – Modules may be different

• What is most efficient cluster?
Track of All Trades

- From a productivity standpoint, the ideal track then should cover all process modules for full scanner throughput.
High Productivity is Not the Only Metric

- **Environment**
 - Resists generally sensitive to environmental contamination

- **Process variability**
 - Very tight targets on CD uniformity and repeatability
 - Drives very tight control of PEB bake temperatures

- **Defects**
 - Very low defects required from wafer handling and processing
 - Immersion processes require additional control of surface properties
 - Double exposure wafers make two cluster passes for each device level

- **Manufacturability**
 - High uptime and good mean-time-to-recovery
Reliability, Availability, and Maintainability (E10-0403):

Mean Time to Respond vs. MTBF vs. MTTR

Low MTBF drives high litho cost because expensive cluster remains idle.

From Phil Seidel (SEMATECH)
Linked cluster

- Less handling (defects)
- Resists stay in closed environment
= Material handling / lot streaming within tool
- Productivity of cluster less flexible

Unlinked cluster

- More handling (defects)
- Resists exposed to environment
= Material handling / lot streaming outside of tool
+ Productivity of cluster more flexible
Summary

- Litho cluster productivity is an important driver of cost per good wafer level exposure.
- Good wafer level exposures are determined by process capabilities and specific requirements of each technology.
- Diversification of technology drives additional process and litho film stack requirements.
- Customers want high throughput, but not at expense of flexibility or yield.
SEMATECH is uniquely positioned to accelerate the commercialization of technology innovations into manufacturing solutions.