

Scanner vs. Track Don't forget about the materials!

Sokudo/SEMI Lithography Breakfast Forum - 2007 Mark Slezak

- Where do materials fit in the battle?
 - Who do we like better?

JSR

- Materials are your friend!
- Other battles on the litho front
 - Topcoats vs. Non-topcoat immersion resists
- The Lithocell vs. Materials

Who do we like???

	Scanner	Track
Positives	 Higher Numerical Aperture Improve aerial image 	 Bake plate uniformity Improved exhaust Dummy Dispense
Negatives	 Lots of rules scan speed requirements leaching specs 	 Lots of rules drain line compatibilities outgassing shot size reduction

- We need to lean on each other:
 - **Scanner** \rightarrow Aerial image
 - **Track** → Film thickness & bake plate uniformity
 - Materials \rightarrow examples of how we carry our own weight
 - Advanced photoresists
 - ➤ TARCS
 - Topcoats
 - ➢ Others....

Materials are your friend

	Scanner	Tracks
Advanced	 Large depth of focus &	 Post exposure bake
photoresists	exposure latitude	sensitivity

Materials are your friend

JSR Micro JSR

	Scanner	Track
TARCS	Controls your leaky lightReduces outgassing	Amine controlLower defectivity

JSR Micro JSR

	Scanner	Track
Others:	Relaxes pressure on	Sell more pumps and
Chemical Shrink,	resolution	coater bowls
DP, trilayer materials		

Semicon West 2007 - Sokudo/SEMI Breakfast

✓ Large process latitude, reflectivity control, and other process enhancement techniques

Other battles on the litho front

Topcoat vs. non-topcoat: checklist

JSR

✓ Develop & scale-up topcoats \rightarrow Done

✓ Support implementation into the 45nm node \rightarrow On-going

✓ Build TC-less resist \rightarrow On-going

Prove which one is better \rightarrow On-going

Topcoat design

JSR

Requirements:

- Suppress chemical leaching
- ✓ Suitable scanning properties
- ✓ Insoluble to water, soluble to developer
- ✓ Excellent lithographic performance
- ✓ Profile compatibility to each 193nm PR
- ✓ No intermixing with resists
- ✓ No extraction from topcoats

JSR TCX topcoat series

Topcoat design

- What knobs can we turn:
 - Modify the acidity dissolution rate & CA

	TC-1	TC-2	TC-3
Acidity	Higher pH	"std" pH	Lower pH
Dissolution rate	125nm/s	200nm/s	800nm/s
Residual Defects	~80,000	<100	<100
Receding Contact Angle	70	69	62
Water Mark Defects	~200	<10	~3,000

Defect reduction – TCX Topcoat

SR Micro JSR

Semicon West 2007 - Sokudo/SEMI Breakfast

Why fix what works? Because it's simpler! (or is it really)

JSR Micro JSR

Non-TC Process	TC Process	
Fluid Non-TC Resist	Fluid Topcoat Resist	
 Pro. Enable to shorten process cycle time Con. Immersion specific resists, scan speed specific resists 	 Pro. More reliable process for HVM at this moment, reflectivity Con. Additional process 	
Current Status Material design : Done / on-going Practical data collection : in progress High volume manufacturing : TBD	Current Status Material design : <u>Done</u> Practical data collection : <u>Done</u> High volume manufacturing : <u>Done</u>	

JSR

cro

Requirements:

- ✓ Low chemical leaching
- ✓ Suitable scanning properties
- ✓ Balance RCA vs. ACA
- ✓ Excellent lithographic performance
- ✓ No post development defects
- ✓ No leaching of PAG's or other additives
- ✓ Try to take advantage of the maturing resist design for 193nm systems

JSR AIM resist series

Immersion related defectivity is strongly related with RCA and ACA.

JSR Micro JSR

	Standard	<u>Std. + TC</u>	<u>AIM - 1</u>	<u>AIM - 2</u>
Material	Dry resist	Dry resist + Topcoat	Topcoat-less resist 1	Topcoat-less resist 2
RCA ACA	<mark>61deg</mark> . 80 deg.	69 deg. 92 deg.	86 deg. 98 deg.	83 deg. 95 deg.
Concern	RCA low Leaching & W/M	TBD	ACA high Bubble	TBD

JSR Micro JSR Std resist vs. TC vs. TC-less **AIM - 1** Standard **AIM - 2** w/TCX041 w/o TC w/o TC -0.35um -0.28um LWR:4.4nm **Standard** -0.21um with TCX041 **3**σ:1.21 -0.14um LWR:4.3nm **AIM - 1** -0.07um <u>w/o</u> TCX041 BF 3σ:1.17 LWR:4.3nm +0.07um **AIM - 2** w/o TCX041 +0.14um 3σ:1.2 +0.21um Scanner:NA=0.85, Dipole +0.28um Mask :Att-PSM(6% HT) Pattern :65nmL/S(LF) +0.35um Semicon West 2007 - Sokudo/SEMI Breakfast

Topcoat vs. Non-Topcoat

- Optimized topcoats have been developed and proven to show HVM capability
- Understanding the RCA vs. ACA relationship is key to the success of implementing Non-TC resists
- TC vs. TC-less resists will be decided in the defectivity battlefield
- Back to our original comparison.....
 - Materials vs. the litho-cluster

The Lithocell vs. Materials

	The Lithocell	Materials
Cost	~\$50,000,000	~\$5000
Install time	2-4 months	2-4 hours
Foot-print	~50m²	~500cm ²
EUV & HIL ready	Source / Lens	LWR & sensitivity / Fluids
Source of defectivity	High	Low
Who gets blamed for defectivity	Low	High
Better gifts at Semicon	iPod, etc	cookies, etc.
Total Score	2	4

Semicon West 2007 - Sokudo/SEMI Breakfast

• JSR R&D in Japan:

icro JSR

- Dr. T. Shimokawa, Y. Yamaguchi, S. Kusumoto, M. Shima, A. Soyano
- JSR Litho Product Development team in Sunnyvale California:
 - K. Fujiwara, J. Smith, Z. Liu
- Sokudo marketing team for the opportunity to present