DPT Challenges & Litho Solutions

Bob Socha
ASML
Outline

- SRAM gate DPT example
 - Overlay, CDU, Resolution (Design) trade-off
- Spacer Challenges
- Litho Improvements to Enable LELE & LFLE DPT
- Conclusion
Outline

- SRAM gate DPT example
 - Overlay, CDU, Resolution (Design) trade-off
- Spacer Challenges
- Litho Improvements to Enable LELE & LFLE DPT
- Conclusion
The Area of the SRAM cell is the most widely used Metric to determine the shrink of the node.

As a result, the area must also be used to compare Litho-DPT to Spacer-DPT shrink capabilities.

Comparison between Litho-DPT to Spacer-DPT based on 1-D geometries (1Dmetric) is not relevant.

\[A_{SE} \text{ is a function of 3 variables } R_{SE}, OV_{SE} \text{ and } CD_{SE} \]
Process Steps Required

LELE

Spacer
Double patterning require better and more lithography

<table>
<thead>
<tr>
<th>Litho exposure equipment parameter as percentage of CD</th>
<th>Single exposure</th>
<th>Litho double patterning</th>
<th>Spacer double patterning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔCD</td>
<td>7%</td>
<td>3.5%</td>
<td>3%</td>
</tr>
<tr>
<td>Overlay (depending on DFM)</td>
<td>20%</td>
<td>7%</td>
<td>7-20%*</td>
</tr>
<tr>
<td>#mask steps</td>
<td>1</td>
<td>2</td>
<td>2-3</td>
</tr>
<tr>
<td># process steps relative to single exposure</td>
<td>1</td>
<td>2</td>
<td>3-4</td>
</tr>
<tr>
<td>Application</td>
<td>2D, All</td>
<td>2D, All</td>
<td>1D, Mainly Memory</td>
</tr>
</tbody>
</table>

* Depending on the amount of “Design For Manufacturing” effort
OVSE and CDUSE requirements for 35nm HP SRAM (shrink of the 50nm HP SE SRAM area by 50%)

k1 Litho-DPT
- Below 50% line is the area of interest
- OVSE must be less than 2.5nm for 50% shrink with Litho-DPT at CDUSE=3nm
 - If current CDUSE=3nm and OVSE=5nm, a 56.2% shrink can be done with Litho-DPT

k1 Spacer-DPT
- Below 50% line is the area of interest
- OVSE must be less than 2.5nm for 50% shrink with Litho-DPT at CDUSE=3nm
 - If current CDUSE=3nm and OVSE=5nm, a 49.5% shrink can be done with Spacer-DPT
Outline

- SRAM gate DPT example
 - Overlay, CDU, Resolution (Design) trade-off
- Spacer Challenges
- Litho Improvements to Enable Litho-Etch-Litho-Etch DPT
- Conclusion
Litho cost per layer: estimates for 32 nm & 22 nm
Single exposure schemes more cost effective
Spacer process can be used for random structures

Desired layout

After spacer process applied
Spacer needs overlay friendly layout to enjoy overlay advantage from the self aligned process.

- Areas surrounded by geometry formed by spacer are less sensitive to overlay errors.
- Areas not surrounded by geometry formed by spacer are more sensitive to overlay errors. Possible CD error or bridging can occur.
- Without design change, overlay is still critical for spacer when exposing a clear field mask!
Spacer with overlay friendly layout
to enjoy overlay advantage from the self aligned process

• In areas not surrounded by geometry formed by spacer, the space width between patterns must increase.
• Design change to increase the space width between patterns may need tighter overlay for next layer.
• Design change to shift a pattern to increase space width may require verification of the electrical performance.
• With these design changes, the cell size may increase.
Spacer Challenges

- CoO is higher with Spacer DPT compared to LELE/LFLE DPT
 - Spacer process integration/complexity increases cycle time

- Not all designs can benefit from Spacer DPT self-alignment
 - Burdens the designer or makes design rules overly restrictive
 - Industry not yet ready for Spacer friendly designs

- How can litho improvements mitigate the Spacer Challenges?
Outline

- SRAM gate DPT example
 - Overlay, CDU, Resolution (Design) trade-off
- Spacer Challenges
- Litho Improvements to Enable LELE & LFLE DPT
- Conclusion
Improved overlay performance options:
DCO ≤ 3.5 nm
SMO ≤ 4.0 nm
MMO ≤ 7.0 nm

Best-in-class immersion productivity (PEP & TOP options):
148 wph (300 mm)
125 x 16x32 x 30 mJ/cm²
Faster chuck swap
Faster measure cycle

Advanced lens control means improved imaging performance @ 38 nm resolution

Liquid particle counter option gives fast feedback and control of immersion water quality

iClean option boosts system cleanliness and reliability
TWINSCAN immersion overlay trend

Single machine overlay [nm]

XT:1400i (2005)

XT:1700i (2006)

XT:1900i (2007)

Next
ASML mask and system enhancements extend lithography to the limit of k_1

- **DoseMapper for optimum CD Uniformity**
- **GridMapper for improved Overlay**
- **Flexible off-axis & polarized illumination**
- **Application specific lens setup**
- **In-built wave-front, polarization and pupil metrology**
- **Offline Dual stage wafer height mapping**
- **Focus Dry, Expose Wet**
- **Mask enhancement techniques & optimization software**
- **Illumination source optimization & software**
Low k_1: High design to wafer integration

Low k_1 (<0.4): Integration of design, mask and lithography processes

Design For Manufacturing (DFM)

- OPC & RETs: PSM, DPT, Scatterbars, DDL verification

Application Specific Manufacturing

- Source-Mask Optimization
- Application specific tuning

Litho aware design constraints

Design space

Manufacturing space
LELE: CDU for Isolated and Dense Lines

Target CD_{litho\,1}(dense) Real CD_{litho} is smaller than target CD_{litho}

Errors caused by 1st litho

1st etch introduces additional Δ CD error

Overlay error: 2nd Litho target CD \neq different from CD_{litho\,1}

Overlay error causes spaces (in a positive process) to be different

Final CD" < 10\% Target CD

Final CD includes 4 populations, two for lines, two for spaces

Dense

Iso
Litho patterning process control for CD and Overlay of 32 nm, using angle-resolved scatterometry

Raw etched poly CDU

Mean CD

Overlay between litho 1 and 2

< 4.9 nm

< 7.0 nm

< 6.3 nm

99.7% OVL X = 4.0 nm
99.7% OVL Y = 4.2 nm

< 2.8 nm

< 3.8 nm

< 0.8 nm

99.7% OVL X = 3.2 nm
99.7% OVL Y = 3.4 nm

Jo Finders et al. | SPIE San Jose, Feb 26, Ref. 6924-07
“Double patterning for 32 nm and below, an update”
LFLE: CDU for Isolated and Dense Lines

Wafer does not leave litho cluster

Real CD\(_{\text{litho}}\) is smaller than target CD\(_{\text{litho}}\)

Errors caused by 1\(^{\text{st}}\) litho

Track freeze process introduces additional ∆ CD error

Overlay error causes spaces (in a positive process) to be different

2\(^{\text{nd}}\) Litho: target CD ≠ different from CD\(_{\text{litho}}\)

“Final CD” < 10% Target CD

Final CD includes 4 populations, two for lines, two for spaces
Litho double patterning process (LFLE) control for CD & Overlay of 32 nm: wafer did not leave the litho cell

Line 1
Mean = 33.5
3σ = 2.8 nm

Line 2
Mean = 37.5
3σ = 1.3 nm

Space 1
Mean = 29.1
3σ = 3.3 nm

Space 2
Mean = 27.8
3σ = 2.7 nm

Litho 1
NA = 1.0
Dipole illumination
σ₀/σᵢ = 0.86/0.65

/ Slide 23
Litho double patterning process (LFLE) control for CD & Overlay of 32 nm: wafer did not leave the litho cell

\[DPT_{OL} = P - P_1 \]

\[P_1 = \frac{P_{1L} + P_{1R}}{2} \]

Overlay

\[
\begin{array}{c}
\text{Mean:} & 0.71 \\
3 \text{ Sigma:} & 2.38 \\
\text{Max:} & 3.29 \\
99.7\%: & 3.19 \\
\text{Nr. of points:} & 331 \\
\text{Nr. of flyers:} & 53
\end{array}
\]

DPT overlay \(3\sigma < 2.5\text{nm}\)
Outline

- SRAM gate DPT example
 - Overlay, CDU, Resolution (Design) trade-off
- Spacer Challenges
- Litho Improvements to Enable LELE & LFLE DPT
- Conclusion
Conclusions

- **Spacer Challenges**
 - Not all designs can benefit from Spacer DPT self-alignment
 - Burdens the designer or makes design rules overly restrictive
 - Additional cost/complexity (cycle time) serves as a detractor

- **Litho Challenges/Improvements**
 - Spacer, LELE & LFLE require much tighter CDU than required from SE lithography; LELE/LFLE must also achieve overlay on the order 3nm
 - Intra-layer overlay not as challenging as inter-layer overlay due to elimination of some process effects.
 - Tighter CDU and overlay budgets should be achieved through active compensation of wafer and field spatial distributions
 - DoseMapper to reduce intra-field and inter-field CDU due to reticle, track, and etch CD variation
 - GridMapper to reduce intra-field and inter-field OV due to reticle registration and wafer distortion

- **XT:1950Hi drives performance improvements to further enable DPT processing.**

- **Future improvements planned in productivity, overlay & imaging to enable cost effective lowk1 solutions.**
Acknowledgement

- **ASML**
 - Donis Flagello, Jo Finders, Mircea Dusa, Skip Miller, David Deckers, Ad Lammers, Dorothe Oorschot, Bart Rijpers, Paul de Haas, Christian Leewis, Martyn Coogans, Eddy van der Heijden, John Quaedackers, Jeroen Meessen, Toine de Kort, Joris Kuin, Robert Routh, Andre Engelen, Eelco van Setten, Mark van de Kerkhof, Hans Bakker, Jos de Klerk, **Koen van Ingen Schneau**, Noreen Harned

- **IMEC**
 - Mireille Maenhoudt, Shaunee Cheng, Patrick Jaenen, Tom Vandeweyer, Diziana Vangoidsenhoven

- **Carl Zeiss**
 - Winfried Kaiser,