

Cost effective scaling: next-generation lithography progress and prospects

Sokudo Breakfast Forum Semicon West

ASML

Statement of the local division in which the local division in the

NXE 3300

Skip Miller

July 10th, 2013

ASML

Public

Slide 2

Outline

- Why EUV & 450mm
- Roadmap & scanner status
 - Roadmap
 - EUV performance status
 - 450mm status
- Summary

Moore's law : Doubling of components per chip every 12 months resulting in a lower cost per component

"Cramming more components onto integrated circuits", *Electronics Magazine April 19, 1965*

Moore's Law: what it means for consumers

IC manufacturers' roadmaps supports further device scaling

2012 - 2013

Buried Wordline DRAM

-

Substrate

22 - 20nm node

Memory: 0.09um2, SRAM Device: planar or FinFET (Intel) Gate: RMG-HKM Channel: Si Vdd: 0.8V

38 - 32nm node

Memory: stacked MIM

Flash

-ogic

Peri: planar Array: 6F2, bWL Gate: polv/SiO2 Channel: Si Vdd=1 35V

19 - 16nm hp 4.5F - 6F2 asymm. cell

Density: 128G Device: FG

2014 - 2015

16 - 14nm node

Memory: 0.08um2 SRAM Device: FinFET, FDSOI Gate: RMG-HKMG Channel: Si; (Si)Ge Vdd: 0.6V

29 - 22nm node

Memory: stacked MIM Peri: planar HKMG Array: 6F2, bWL Gate: HKMG Channel: Si **Vdd=**1 2V

Density: 256-512G

Device: dual-FG

6F2 asymmetric cell 4F2 symmetric cell

11 - 10nm node

2016 - 2017

Memory: 0.06um2 SRAM Device: FinFET Gate: HKMG Channel: Si. Ge. CONTRACT OF STREET, ST IIIVr InGaAs Vdd: 0.5V

22 - 16nm node

~ 11nm hp (planar) 3D NAND at $3x \rightarrow 2xnm X$ pt intro at 2xnm

7F2 asymmetric cell 4F2 symmetric cell Density: 512-1024G Device:: dual-FG, BiCS in HVM(@4xnm)

2018 - 2019

8 - 7nm node

Memory: FBRAM, STT-RAM, >8TSRAM Device: FinFET, Nanowire, TFET Gate: HKMG Channel: **IIIV-Graphene**

16 - 14nm node

Memory: FBRAM, STT-MRAM, RRAM, **PcRAM** Peri: planar Array: 4F2, 1T, 1T1R, 1T1MTJ(VFET) Gate: HKMG Channel: Si Vdd~1V

< 10nm hp (planar) X-pt intro at 2xnm

Density: > 1T with 3D chip stacking

Device: 3D BiCS. XPoint-RRAM Selector: diode

ASML

Public

Industry roadmap towards <10 nm resolution Lithography roadmap supports continued shrink

ASML

Public

Cost becomes a concern post 28 nm

ASML

Public

GF, ISS, jan 2013

Litho roadmap supports cost per gate roadmap EUV needed to enable industry target

ASML

Public

Litho roadmap supports cost per gate roadmap EUV needed to enable industry target

ASML

Public

Public Slide 10

Only EUV can enable 50% scaling for the 10 nm node

Layout restrictions and litho performance limit shrink to ~25% using immersion

EUV meets all litho requirements

Source: ARM, Scaled N20 nm flip-flop design

Even gridded SRAM designs prefer EUV at 10 nm

Limited overlay between local interconnect layers makes multiple patterning very difficult

Public Slide 11

Quadruple expose immersion

Even gridded SRAM designs prefer EUV at 10 nm

Limited overlay between local interconnect layers makes multiple patterning very difficult

Litho roadmap supports cost per gate roadmap EUV needed to enable industry target

ASML

Public

ASML

Public

Slide 14

Outline

• Why EUV & 450mm

Roadmap & scanner status

- Roadmap
- EUV Performance status
- 450mm status
- Summary

NXE technology roadmap has extendibility to <7nm

ASML

ASML's NXE:3100 and NXE:3300B

Public

	ASAAL .	
	NXE:3100	NXE:3300B
NA	0.25	0.33
Illumination	Conventional 0.8 σ	Conventional 0.9 σ Off-axis illumination
Resolution	27 nm	22 nm
Dedicated Chuck Overlay / Matched Maching Overlay	4.0 nm / 7.0 nm	3.0 nm / 5.0 nm
Productivity	6 - 60 Wafers / hour	50 - 125 Wafers / hour
Resist Dose	10 mJ / cm2	15 mJ / cm2

NXE:3100 imaging & overlay performance at customers

ASML

Eleven NXE:3300B systems in various states of integration new clean room completed in July '12

ASML

Public

ASML

Public

Slide 20

NXE:3300B imaging and overlay beyond expectations Matched overlay to immersion ~3.5 nm

TT:1950i reference wafers EEXY sub-recipes 18par (avg. field) + CPE (6 par per field)

EUV source: repeatable stable performance, dose in spec 250 W target to be reached in 2015

250W enabled by high-power drive & seed laser, 1µm separate pre-pulse, 80kHz droplet generator

1000

Slide 21

ASML

Public

Power [W] 250 80W enabled by 3300 drive laser 125 Productivity [Wafers/hr] 80 100 55 126 40 81 30 58 43 10 Total 20 hours 40W & 50W runs with good dose reproducibility: 10 5 99.7% of the dies < 0.5% dose 20 hour runs total representing ~ 830 exposed wafers @ 15 mJ/cm² 55W run (97.5% of dies in spec) to test peak performance 1

NXE:3300B systems have started shipping

ASML

RZX 00009 ASML

ASML

Public Slide 23

Outline

- Why EUV & 450mm
- Roadmap & scanner status
 - Roadmap
 - EUV Performance status
 - 450mm status
- Summary

Summary

ASML

Public Slide 24

• Cost effective scaling in lithography enabled by:

- Immersion performance improvement in imaging, overlay & productivity
- EUV at 0.33NA for ultimate shrink capability & potential device performance, starting with device production in 2014
- 450mm for further cost reduction opportunity, targeted to start device production in 2018

EUV roadmap & scanner status

- NXE:3100 in use for process/device development at customers with positive results
- NXE:3300B has started shipping and meets imaging and overlay targets
- Industrialization progress demonstrated towards 70 WPH in 2014
- Roadmap to <7nm with 0.33NA + extensions & double patterning &/or higher NA

• 450mm roadmap & scanner status

- 450 mm looks like a doable cost reduction scenario, but the litho-specific cost reduction will be limited, considering that productivity scales fundamentally negatively with the wafer surface
- ASML has initiated 450 mm program, early version systems from 2015 using EUV systems and 2016 for immersion systems, significant enhancements required.
- Concerns remain regarding limited overall industry 450 mm implementation plans

Thank you!