

SOKUDO

"Shooting for the 22nm Lithography Goal" with the

SOKUDO Lithography Breakfast Forum 2010 July 14 (L1)

Three (3) different exposure options for 22nm:

- MAPPER Lithography on E-Beam Maskless (ML2)
- ASML on EUV Lithography & M.P. Immersion ArF
- NIKON on Multiple Patterning Immersion ArF & EUVL

One (1) in-line coat/develop track fits all scenarios:

Public External (L1) However, coat/develop track configuration varies significantly by photolithography technology ...

wph = wafers per hour * Assumes E-Beam (ML2) Cluster Tool such as MAPPER Litho.

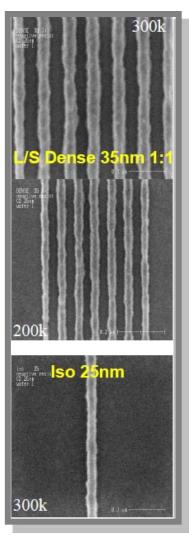
Throughput (wph) Projections

		2011	2012	2013	2014	2015	
	E-Beam	1 – 5	5 – 10	60 – 100*	100+*	120+*	
	EUV	30 - 60	60 - 100	80 – 125	125+	150+	
	Immersion	180 – 230	200 – 240	220 – 260	260+	280+	
				22NM VOLUME RAMP	NECESSARY FOR IMME DOUBLE / MULTI-PATTI TO BE COST-EFFEC		ERNIN

Resist Process Steps on Track

SOKUDO Coat/Develop Track 22nm Process Development

Cimec Double Patterning LPLE


Materials & Process Benchmarking 32nm → 26nm

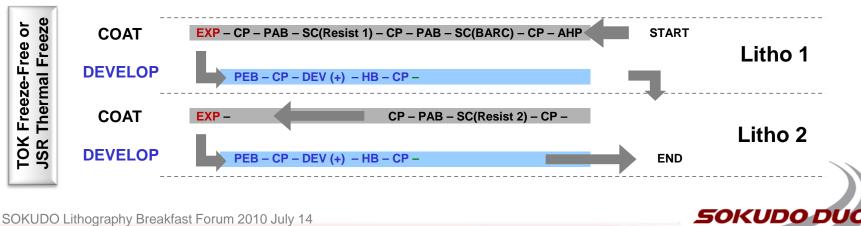
• Selete EUV Lithography Resist Qual.

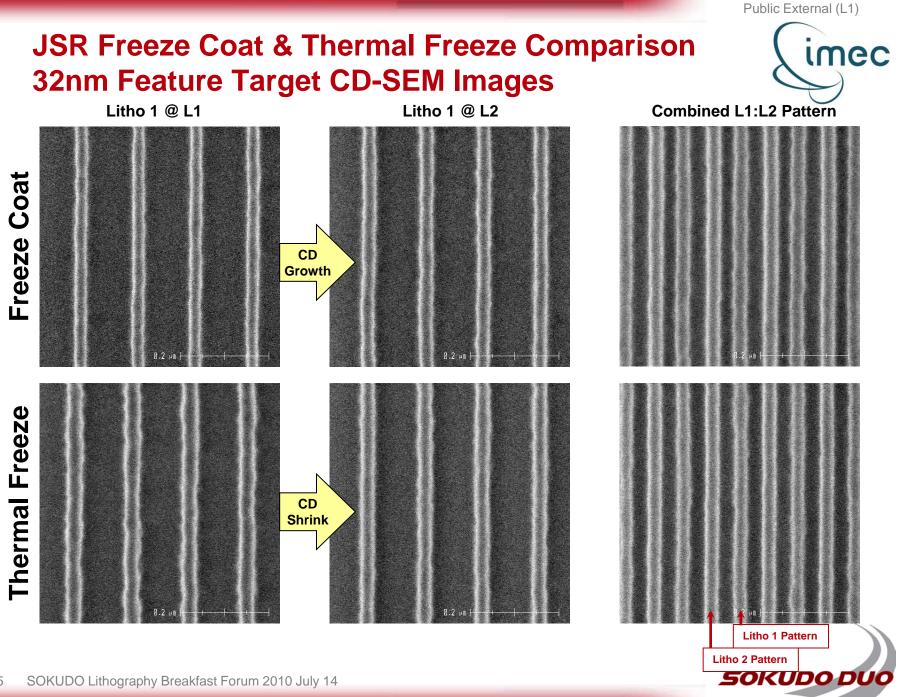
New resist process evaluations @ SELETE

• Celett E-Beam DW Qualification

MAPPER Lithography E-Beam Process R&D

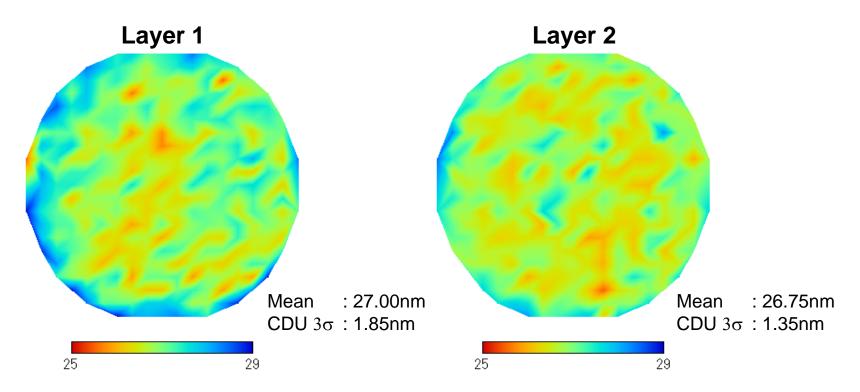
SOKUDO RF3 track process E-Beam litho. exposures on Vistec SB3054DW at LETI


imec Immersion Lithography with SOKUDO


- Immersion Resist Process Defectivity: Microbridging & Resist Filtration
- CoO Study for Double Patterning Lithography
- CDU optimization for immersion lithography & Double Patterning:
 - JSR's litho-freeze-litho process (freeze coat, thermal freeze)
 - TOK's posi-posi process "Freeze-Free"

"Photo" Double Patterning Resist Process on Track

	Freeze Coat chemical b/w 1 st & 2 nd Resist	Self-Freeze by 2 nd Resist Coat & Bake	Thermal freeze bake	
JSR	JSR		•	
ток		۲		
Dow Elec. Mtrl.	0	0		
Shin-Etsu		0		
Sumitomo		0		



JSR Thermal-Freeze 26nm L/S Target CDU

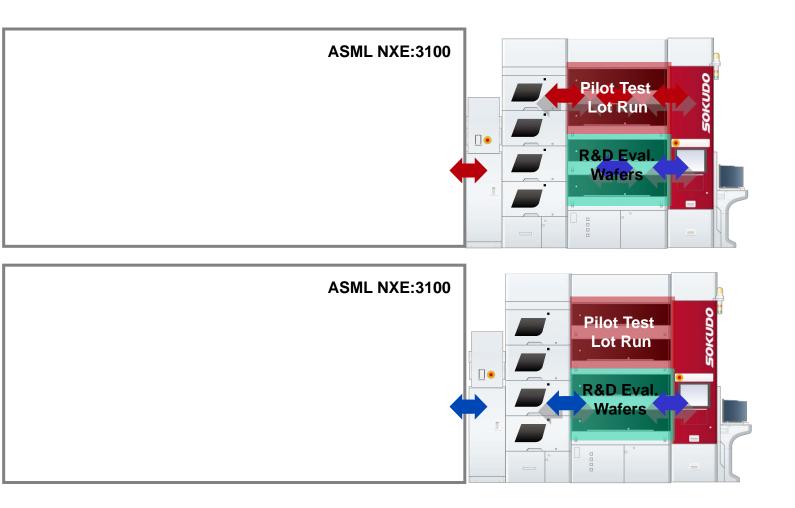
SPIE 7639-81 Simplified "Litho-Cluster-Only" solution for double patterning ; JSR, ASML, SOKUDO

The CD uniformity data with the thermal freeze process comparable to traditional litho-etch-litho-etch and spacer double patterning CDU.

Substrate:ARC®29-SR (105nm)

Layer 1 : Non-TC thermal freeze resist (FT=60nm,130C/125C, SCA/RCA/ACA=90^o /76^o /94^o) Layer 2 : Non-TC normal resist (FT=50nm,100C/95C, SCA/RCA/ACA=92^o /80^o /95^o), Exposure : 39nmL96nmP with att-PSM, NA=1.35, Dipole40X, 0.747/0.626, Y-Polarization Development : ECO Nozzle(OPD262/DIW)

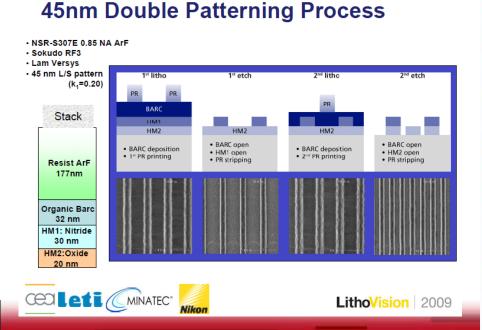
SOKUDO DUO integration for ASML NXE:3100 (EUV)


SOKUDO EUVL Coat/Develop Track Configurations ~120wph

- Coat: Underlayer, Resist
- Develop: TMAH / TBAH developers; various rinse approaches
- Bake: Biased Hot Plate (QBH) for CDU control / tuning; "Q" Quick set-temperature change bake between lots

Maximize EUV Lithocell Utilization: Exposure Test Lot Run + R&D Eval. Wafers simultaneously

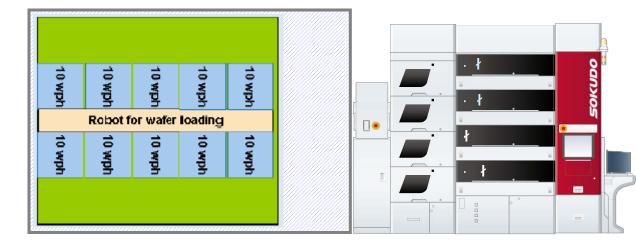
Public External (L1)



Always keep critical EUV scanner running when available! **KEY for R&D + Pilot Line Productivity!** SOKUDO DU

SOKUDO Lithography Breakfast Forum 2010 July 14 20

E-Beam Experience by SOKUDO


- Advantest F-100 (Japan)
 - SOKUDO RF3 Coat, Developer in-line with E-Beam
- Vistec SB3054DW @ Celleti Grenoble (France)
 - SOKUDO RF3 off-line for E-Beam
 - in-line with Nikon NSR-S307

The End Goal...

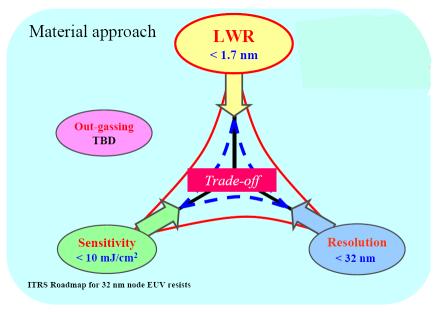
SOKUDO DUO E-Beam Coat/Develop Track in-line with MAPPER

MAPPER E-Beam Cluster

Target 100 WPH

SOKUDO DUO Track

~%\$\$!%&\$`K D<


ł

2C = Underlayer 2C = RESIST4D = DEVELOPwith Backside Scrub + E-Beam interface

EUV, E-Beam Common Resist Process Development Focus Points

- Resist Manufacturers Continuously Reformulating for
 - Line Width Roughness (LWR)
 - Sensitivity to Dose
 - ► Resolution 32 nm → 22 nm
- 32 nm → 22 nm CD LWR, Pattern Collapse & Defectivity Track Process Studies:
 - Develop methods, solutions
 - Rinse methods, solutions

Reference: SPIE 7636-27, February 2010, San Jose, CA USA

SOKUDO EUVL Technical Papers History

SPIE Advanced Lithography 2009

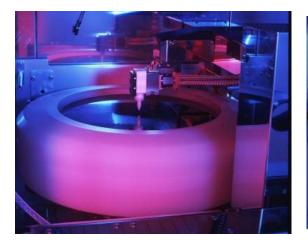
- 7273-111 **Development of EUV resists at Selete** SELETE (SOKUDO assignee, Koji Kaneyama)
- 7273-115 **EUV resist processing in vacuum** SELETE, SOKUDO

International Symposium on EUVL 2009

- Resist II **EUV resist materials and processing at Selete** SELETE (SOKUDO assignee, Koji Kaneyama)
- Poster 94 Study of post-develop defect on typical EUV resist SOKUDO

SPIE Advanced Lithography 2010

- 7636-111 Study of post-develop defect on typical EUV resist SOKUDO
- 7636-115 Alternative resist processes for LWR reduction in EUVL SELETE (SOKUDO assignee, Koji Kaneyama)
- 7639-26 **Development of EUV-resists based on various new materials** SELETE (SOKUDO assignee, Koji Kaneyama)
- 7636-27 **Development of resist material process for hp 2x nm devices using EUV lithography** SELETE (SOKUDO assignee, Koji Kaneyama)



2009 International Symposium on Extreme Ultraviolet Lithography

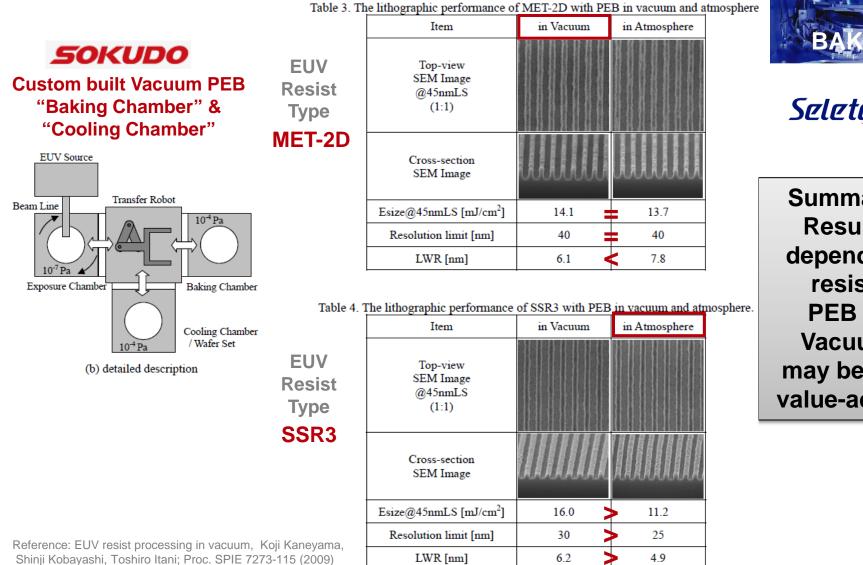
Coat, Bake & Develop Track Process Knobs for EUV / E-Beam resist development

SPIN COAT

- Dispense Chemistries:
 - Underlayer +
 - Photo Resist
- Thin-film coating recipe
 - 40-60nm thickness

BAKE & CHILL

- ✤ Post-Expose (PEB) for
 - CD Uniformity control
- ✤ High Temp. (PAB, BARC)


DEVELOP

- Defect Control Approach
 - ✤ Wafer Rinse & Dry
 - Surfactant Rinse
- Developer Chemistries:

TMAH, TBAH(?)

SOKUDO DUC

PEB in vacuum vs. atmosphere

SOKUDO Lithography Breakfast Forum 2010 July 14

28

Public External (L1)

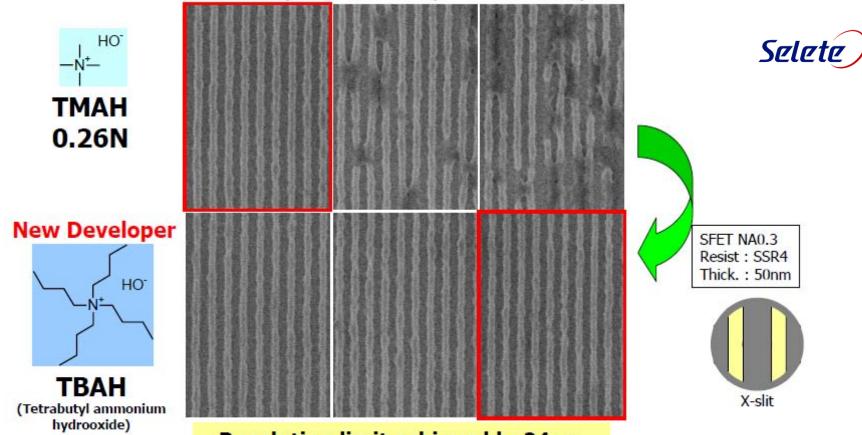
Selete

Summary: Results depend on resist, **PEB** in Vacuum may be low value-added

SOKUDO DU

TBAH Developer extends CD capability, reduces pattern collapse

25nm L/S


24nm L/S

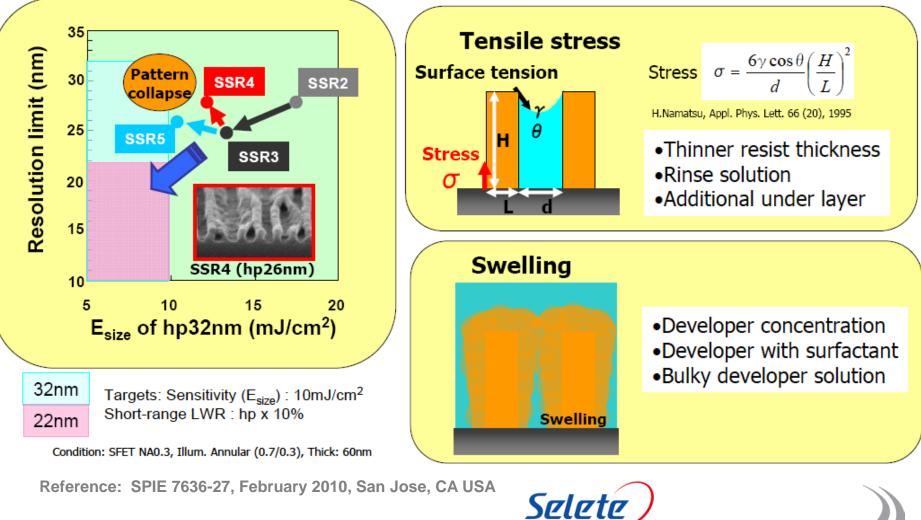
26nm L/S

Public External (L1)

SOKUDO DU

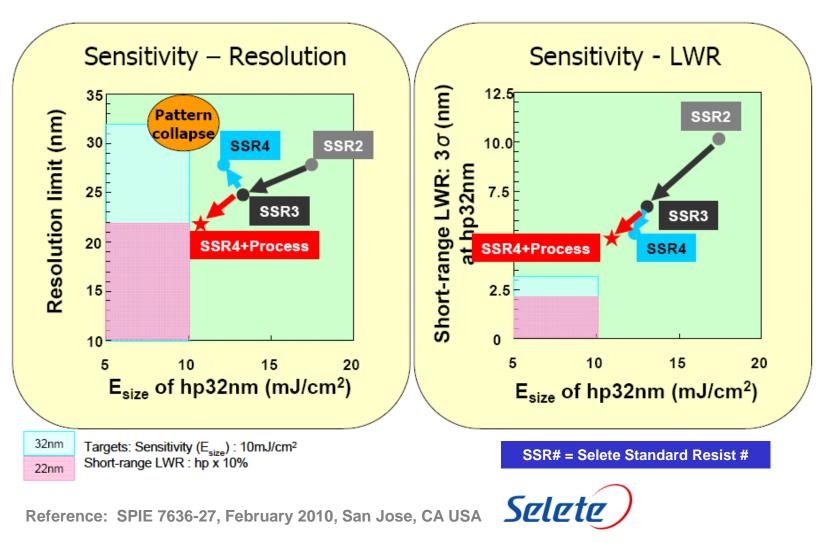
Resolution limit achieved hp24nm

Reference: EUV resist materials and processing at Selete, K. Matsunaga, et.al., International Symposium on EUV Lithography, October 2009, Prague

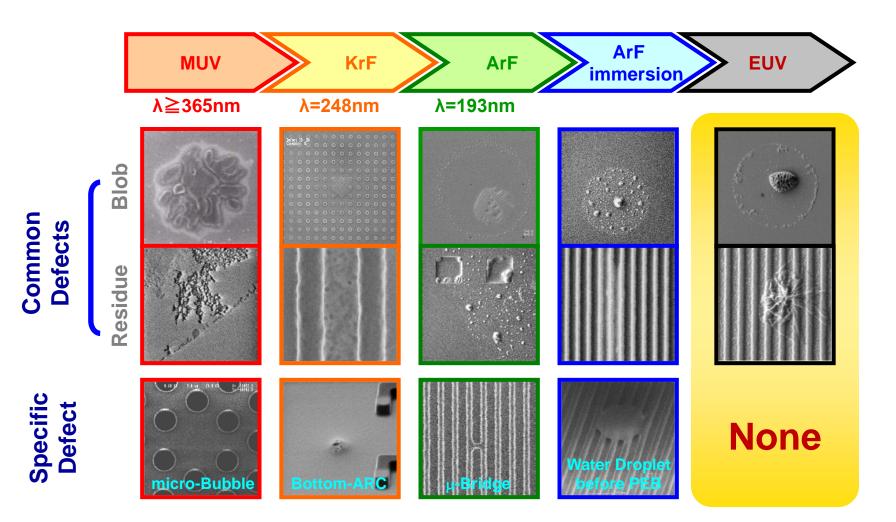

0.26N

SOKUDO DU

Pattern Collapse limiting EUV resist resolution


Sensitivity - Resolution

Model of pattern collapse and improvement by process


SOKUDO DU

EUV resists improving with each new generation: Resolution, LWR, Sensitivity

Common / specific defect history; EUV study started

Selete

(e) of i

EUV & E-Beam ...

- Although EUV may be leading the march towards 22 nm, E-Beam can close gap with (MAPPER) throughput plans for improvement towards 2012+
- SOKUDO participating in EUV and E-Beam collaborations
 - EUVL consortia resist evaluations and characterization
 - E-Beam IMAGINE project resist process qualification

• EUV and E-Beam resists following similar trends and challenges:

- ► In parallel transitioning from $32nm \rightarrow 22$ nm process development
- Both resist systems largely based on reformulating i/KrF generation blends
- Resist trending to thinner coatings: 40-60 nm target thickness
- Resolution LWR Sensitivity (RLS) all common issues

"Shooting for the 22nm Lithography Goal" with the

SOKUDO Lithography Breakfast Forum 2010 July 14 (L1)