NIKON RESEARCH CORP. OF AMERICA

DSA and 193 immersion lithography

Steve Renwick

Senior Research Scientist, Imaging Sol'ns Technology Development

Where the industry wants to go

Where we are now

193i

e-beam

EUV

193i optical lithography: pushing the limit

DSA: Who ordered *that?*

Block copolymers, or magic spaghetti

Stringlike molecules with A and B segments that repel each other

 $\mathbf{f} = \text{length} \text{ of } A \text{ portion}$

1-f =length of B portion

Bates, Fredrickson Physics Today 1999

Self Assembly

Cylindrical phase oriented parallel to the wafer surface

Undirected

It "wants" to form structures that we like.

DSA and 193i litho: a new team

- The scanner provides the support:
 - CD Control
 - Flexible focus and dose control
 - Overlay
 - Fast wafer handling
- Through the magic of chemistry ...
 DSA provides the small size.

Directing the self-assembly

- In each case, a guide structure is printed with 193i litho.
- The rest is chemistry ...
- Graphoepitaxy: building a physical fence

Chemoepitaxy: painting chemical stripes

Resolution (L/S)

- Univ. Wisconsin, chemoepitaxy approach:
 - Positive-tone resist used to expose guide patterns.
 - Coating and etching to produce stripes used for directing the polymers.
- 12.5 nm L/S
- 200 nm DoF and 40% EL

Rathsack *et al.,* AdvLitho 2012, *Proc SPIE* **8323**

imec

WISCONSIN

Chemical process teamed with 193i litho produces 12.5 nm L/S with excellent process latitude

Resolution cont'd (contacts)

- TEL Japan on a Nikon S610 scanner:
 - Negative-tone prepatterning
 - 87 nm guide patterns minimized missing-hole effect
 - Note the "healing effect:" CDU and CER were reduced.

The guide structure resolution is well within 193i capability

Nikon

Process control ⇒ Focus & dose control

- Does the DSA process impose special requirements on the scanner?
- Some processes very sensitive:
 - Graphoepitaxial process
 - 3% exposure latitude @ ~50 mJ/cm²
- Some are not:
 - Chemoepitaxial process
 - Process window:
 - 13.5 to 16.5 mJ/cm² dose (25% @ best focus)
 - 140 to 270 nm focus (130 nm @ best dose)

Some sensitive DSA processes exist ...

Existing focus and dose control

- Focus control:
 - 12.2 nm 3 σ across a wafer
 - About 10 nm full range drift over several days

S621D focus uniformity +50 nm -50 nm

- Dose control:
 - typically ±1% or less.

... but the scanner is already designed for sensitive processes

Process tuning capability already exists

CDU Master compensates for process-induced errors

... even to the point of compensating for them.

Defectivity

- Immersion-induced defects have been a challenge for the industry.
 Will that happen again?
- Studies with deliberate defects show that the DSA process is selfhealing to a point:

Somervell *et al.,* Advances in Resist 2012, *Proc SPIE* **8325**

Existing defectivity

Nikon

Immersion-induced defects have been steadily reduced

Defectivity should continue to drop with DSA.

Overlay

- DSA can only print:
 - Contact holes
 - Equal L/S gratings.
- What if you want something else?
- DSA processes will need associated trim masks.
- Additional overlay requirements.

Back-of-the-envelope analysis

Use an aerial image to "burn off" a resist feature...

allowed overlay error 2-3 nm

Existing overlay

• The Streamlign platform is already meant for double patterning.

Single-machine OL < 2 nm

Tool-tool product overlay 4.5 - 6.5 nm

Champion data: 0.74 nm SMO.

Existing scanner platforms should meet DSA requirements

Potential ways to employ DSA

Nikon

- Careful trim-mask schemes.
 - employ existing knowledge from double patterning.

Cutting lithography

- "Alphabet" methods for constructing arbitrary contact patterns
 - Stanford University work

Much of the challenge will be in the EDA area.

Will it fly? Conclusions

- Scanner requirements are largely met already:
 - Resolution
 - Dose and focus control
 - Overlay (ongoing improvements)
 - 200 wph throughput
- Challenges remain for processing, integration, and mask design.

We expect DSA to be employed as an adjunct to 193i lithography.

Nikon. Evolution in Action.