Advanced Sub-20nm 450mm Lithography

Platform Maturity and Wafer Availability

Paul Hofemann

Corporate Marketing & Business Development

Corporate Profile

Global Nanoimprint Leader

- Headquartered in Austin, Texas
- Installations and commercial partnerships established in semiconductor memory and HDD
- DNP commercial imprint mask partnership
- Eleven years experience and over \$165 million invested

Strategic Objectives

- 1. Capture substantial share of the existing \$6B semiconductor lithography equipment market
- 2. Utilize MII's low cost lithographic capability to enable new nanotechnology markets

INVESTORS

Silent Investors

Jet and Flash™ Imprint Lithography

With twelve years and \$165M invested, there are 160 patents issued in US and 250 people working on J-FIL full-time around the world

▶ High adhesion to substrate

J-FIL[™] **Advantages**

- Sub-20nm Lithography with a Single Patterning Step
- **▶ Lowest Cost of Ownership**

- ► Technology is Adaptable to Broad Applications
 - CMOS, Flat Panel Displays, Hard Disk Drives, Biotechnology, Clean Energy

Jet and Flash™ Imprint Lithography (J-FIL™)

Proprietary, patented lithography technology with higher performance and lower cost than traditional optical products

Very High Resolution Nanoscale Patterning

- No wavelength of light imaging restrictions
- Room temperature process allows accurate overlay and high throughput

Low Cost of Equipment and Operation

- Significantly cheaper than optical lithography tools
 - No lens
 - No laser light sources
 - No tracks
 - No material wastage

Large Print Area

Not limited by optical field sizes

Technology is Adaptable to a Variety of Applications

- Semiconductors
- Flat Panel Displays
- Hard Disk Drives
- HB-LEDs
- Biotechnology
- Clean Energy (Solar, Battery)

Key Market Opportunities

Semiconductor

Memory ICs

Flat Panel Displays

Wire Grid Polarizers

Hard Disk Drives

Bit Patterned Media

Semiconductor J-FIL™ Collaboration

Semiconductor Platform Roadmap

Commercial Mask Supply DNP

Master/Replica @ 2x nm	Target	2012	X: 2.47nm, 3σ	Υ: 2.23nm, 3 σ
Master defectivity (cm ⁻²)	0	0 with repair	20000 Image	Placement
Replica added image placement (nm, 3σ)	< 2	<2	10000-	11 11 11 1 12 14 15 1
Replica defect density cm ⁻²	<1	3	> -5000-]	11 15 11 5
Replica CDU (nm, 3σ)	2	1.5	-10000- -15000-	et 10 00 0
Defect repair of masters	Yes	In use	-20000 -15000 -10000 -5000	0 5000 10000 15000 X Axis Title

6025 Imprint Mask

Imprinted Resist Lines

Overlay Performance

Number of fields measured: 32 Number of points per field: 30

	X	Υ
Raw Mean	-0.10	-0.63
Raw 3sigma	9.40	9.68
Mean + 3sigma	9.5	10.31

- ▶ Biggest error sources:
 - Replica Imprint mask image placement
 - Wafer chuck anomalies

Further improvements to the mask and to the wafer chuck have resulted in **current mix and etch overlay of** <u>8nm</u>

Defectivity Improvements

Several orders of magnitude improvement over last two years

- Precise mask separation control
- Onboard resist filtration system

Low defect adders from imprint during multiple wafer runs

▶ 4.7 pcs/cm² per lot (25 wafers)

Imprint Electrical Yield >90%

Test Patterns

Electrical Defect Testing: Yield vs. Line Length

- ► Toshiba presented during 2012 SEMATECH Litho Forum and stated verbally that yields >90% have been achieved at 10 meter line on a few runs.
- Even more progress expected with next generation onboard resist filtration and mask replica defect improvements.

>100wph Imprint Stepper Development

- ▶ For High Volume Manufacturing, resist fill times of less than 1 second are required for stepper system throughput of > 100 wph (300 mm)
- ▶ Keys to Fast Fluid Fill
 - Small drop volume: Pico liter sized drops
 - GDS based volume targeting
 - Fluid front control
 - Low viscosity imprint resists
 - Materials optimized for wetting and filling performance

J-FIL Cost of Ownership Advantage

NAND FLASH Manufacturing Ramp by 2015

Multiple systems already installed for nanoimprint performance refinement and device process integration

- Industry infrastructure readiness;
 - Equipment partner experienced in building and shipping J-FILTM steppers
 - High quality DNP commercial imprints masks available today

Semiconductor Platform Roadmap

450mm Lithography Is Available Today

Molecular Imprints Awarded Contract from Leading IC Manufacturer to Provide Lithography Equipment and Wafer Patterning Services in Support of the Semiconductor Industry's 450mm Wafer Initiative

▶ PO Received Nov 2011

► Tool Accepted Dec 2012

Wafer Services have begun Mar 2013

▼ The state of th							
2011	2012	2013	2014	2015			
P.O.							
•	Tool Build	450mm Wa					

Today

450mm Lithography Wafer Services

Intel is managing all 450mm patterned wafer inquiries

MII is the Only Company Producing 450mm Patterned Wafers Today!

Wafer Scale Processes Realizing 450mm Wafer Cost Advantage

"Litho cost has recently soared to ~50% of total wafer processing cost" *

Field-Scale Processing

- Optical Lithography*
- Nanoimprint Steppers
- ▶ Die-to-Die Inspection

Wafer-Scale Processing

- ▶ Etch
- Deposition
- ► CMP
- Large Area Nanoimprint

J-FIL for Backend Wafer Scale Processing

- J-FIL is already being scaled for Hard Disk Drive (HDD) and Flat Panel Display large area substrates
 - Throughput 65mm HDD platters runs at 700 disks per hour with a CoO of less than 50 cents per disk!
- ▶ 450mm Backend Patterning Could leverage the same CoO advantages
 - Integrated resist jetting eliminates the need for track
 - Resist jetting has zero waste for significantly reduced consumable cost
 - Estimated 200+ WPH based on established models

Molecular Imprints has some early customer pull for 450mm Wafer Scale Backend Lithography and is currently qualifying opportunity

Summary

- Molecular Imprints systems continue to progress towards manufacturing ramp within the next 18 months
 - Defectivity, overlay, throughput performance within striking distance
- Industry infrastructure also preparing for 300mm ramp in 2014
 - Equipment partner's cluster module stepper in development
 - DNP's imprint mask capabilities achieving defectivity specs with impressive early 15nm 1X mask results
- Imprio 450 platform is ready today and under contract to provide patterning services to enable industry's 450mm timeline
 - Intel is managing wafer demand inquiries

Acknowledgements

