

Holistic View of Lithography for Double Patterning

Skip Miller ASML

Outline

- Lithography Requirements
- ASML Holistic Lithography Solutions
- Conclusions

Shrink Continues...Lithography keeps adding value

Average of multiple customers' input

Year of production start*

* Note: Process development $1.5 \sim 2$ years in advance

Sokudo Litho Breakfast Forum 2009

Most Likely Lithography Roadmap

DPT will bridge gap between single exposure 193nm & EUV

	Half pitch (I	nm) 10	00 65	45	32	22	16	11	
	Y	'ear	2005	2007	2009	2011	2013	2015	
λ (nm)	NA								
248	0.93	0.3	34						
193	0.93		→ 0.31		Double	Patterning			
	1.20		0.40	0.28	\downarrow				
	1.35	Low k ₁ c	hallenge —	→ 0.31	0.22	0.15 lr	nfrastruct	ure challe	enge
13.5	0.25					0.41 🗲		J	
	0.32					0.52	0.38		
	0.40						0.47	0.33	

k1 = (half-pitch) * numerical aperture / wavelength

Most likely Opportunity Unlikely

Options to print below immersion single exposure limit

Required Litho CD Uniformity vs Half Pitch DPT drives need for significant improvement in CDU

Required Litho Overlay vs Half Pitch

DPT drives need for significant improvement in Overlay

Lithography Requirements Summary

DPT requires improved overlay & imaging, as well as higher productivity

Litho exposure equipment parameter as percentage of CD	Single exposure	Litho double patterning		Spacer double patterning	-
ΔCD	7%		3.5%	3%	
Overlay (depending on DFM)	20%		7%	7-20%*	
#mask steps	1		2	2-3	
# process steps relative to single exposure	1		2	3-4	

Requires improved productivity for CoO

Requires improved imaging & overlay control

* Depending on the amount of "Design For Manufacturing" effort Sokudo Litho Breakfast Forum 2009 s

Outline

- Lithography Requirements
- ASML Holistic Lithography Solutions
- Conclusions

DPT Requires Holistic Litho Optimization

Combination of Computational and Wafer lithography

NXT:1950i Innovations for Superior Overlay & Imaging at 200wph

NXT wafer stage metrology impact on overlay

X-coordinate Y- coordinate

Current stage metrology stage ferometer

300 mm

NXT: improved overlay at high throughput

NXT innovations bring immersion overlay < 2 nm

x, y : 1.6, 1.7nm

3 day overlay

Ultimate half pitch at 1.35NA: 36.5 nm Large process window with 10% EL and 500nm DOF

CD uniformity (3σ**) below 0.9 nm with extreme dipole** *38-nm dense lines measured CD uniformity*

Full wafer *CDU* = 0.87 *nm* without reticle and process correction

Through lot wafer to wafer variation CDU <0.3 nm 38-nm dense lines with dipole illumination

Sokudo Litho Breakfast Forum 2009

ASML system throughput roadmap drives CoO

Source: ASML

Sokudo Litho Breakfast Forum 2009

NXT Immersion design : single digit defect level

45nm Pattern Defect Test (10 wafers)

NXT Immersion design : single digit defects across multiple systems

45nm Pattern Defect Test (10 wafers) on 4 systems

Holistic litho enables low k₁ / DPT applications

Co-optimization of source shape and pattern split

Enables optimum process window

•By combining source expertise from ASML and mask expertise from Brion, enables larger process window with better CD Uniformity

Litho and application aware double patterning

Example: 2D logic gate aware split & model based overlay stitching

DPT requires a Fast & Flexible Source

ASML FlexRay

Sokudo Litho Breakfast Forum 2009

Holistic Litho Solution to optimize DPT CDU

Litho patterning process control for CD and Overlay

Measurements of final 32 nm L/S using angular resolved scatterometry

Spacer litho control improves wafer CDU

Measurements of final 32 nm L/S using angular resolved scatterometry

Uncontrolled

Outline

- Lithography Requirements
- ASML Holisitic Lithography Solutions
- Conclusions

ASML Delivers Solutions to Drive Industry Shrink

DPT will bridge gap between single exposure 193nm & EUV

Conclusions

- DPT will be used as a litho solution to enable future shrink as bridge between single exposure immersion & EUV
- DPT requires aggressive overlay & imaging requirements at high productivity
- NXT:1950 delivers required overlay & imaging at high tput to enable a cost effective DPT solution
- Co-optimization of source and pattern split via Brion products maximizes process window for DPT
- FlexRay delivers fast & flexible source shapes required for lowk₁ / DPT technology
- Holistic Litho optimization delivers solutions to optimize cdu & overlay to meet future lithography requirements

