

Stanford University

## Directed Self-Assembly for the Semiconductor Industry

H.-S. Philip Wong, Chris Bencher<sup>#</sup> Linda He Yi, Xin-Yu Bao, Li-Wen Chang Stanford University, <sup>#</sup>Applied Materials

#### Stanford University





J. Y. Cheng et al., Adv. Mater. 2008, 20, 3155–3158 [IBM]

R. Ruiz...P. Nealey, Science 321, 936 (2008) [Hitachi, Wisconsin]

## **Device Fabrication**

# Does not require long range order

J. Stork, TI (2007), Stanford seminar

X

Nanga

## **Device Fabrication** Requires

Multiple-pitch

×

Nanga

- Multiple-ordering
- Multiple-size
- One layer process
- **Practicality** (i.e. cost) Single material system

**Technical** 

- Industrial compatible process
- J. Stork, T. Transparent to circuit designers
- requirement



Adapted from: ucsusa.org



## **Directed Self-Assembly by Physical Confinement**



L.-W. Chang...H.-S. P. Wong, IEDM , p. 879, 2009

## Control of DSA with Small Guiding Templates

## Size Comparable to self-assembly dimensions



Flexible and precise control knobs: Thickness, size, density









scale bar







Square lattice



**Rhombic lattice** 

## **Small Templates**



#### Canonical templates:

- Simplest template set to form desired patterns
- Manufacturable with current litho tech.

#### **Design Rules:**

 The standards to disassemble a layout to canonical templates and reassemble canonical templates to pattern devices



## Square Template DSA Pattern Size Analysis



## 2-Hole Pattern Analysis



H. Yi ... H.-S. P. Wong, Adv. Mater. , 2012

## **3-Hole Pattern Analysis**





## **Design Space for 2-3 Hole Guiding Templates**



## S

## IBM 22-nm SRAM Contact Holes Layout



\*Double pattern and double etch process were used to achieve these 26 nm size contact holes.

Haran, B. S. Proc. IEDM (2008).

## **DSA-Aware Contact Holes for SRAM**



## DSA Patterned Contact Holes for SRAM

#### **Template SEM**

DSA SEM







- 300mm wafer
- 193 nm immersion Litho
- Industrial compatible sol.



X.-Y. Bao, H. Yi ... H.-S. P. Wong, *IEDM*, p. 167, 2011

## Contact Holes for NAND (strategy)

## 2-hole templates for NAND





15 nm hole size 40 nm pitch

Rotate to fit 30nm pitch

(source: UBM Techinsights)



X.-Y. Bao, H. Yi ... H.-S. P. Wong, IEDM, p. 167, 2011

## Contact holes for DRAM (strategy)

### 3-hole templates for DRAM

(Source: Chipworks)



3-hole templates (70x145nm)

X.-Y. Bao, H. Yi ... H.-S. P. Wong, IEDM, p. 167, 2011



## **Contacts for Random Logic Circuit**

Example: Conventional 45nm HA-X1 Layout



Source: Nangate 45nm Open Cell Library

#### **Challenges for DSA patterning**

- Overcome resolution limits
- Irregular contact distribution
- Guiding template design
- Optimal template size and shape



Courtesy of Jason Sweis, Cadence Design Systems

## DSA-Aware Layout: Simplifying Template Design

Starting Point: **G**ridded **D**esign **R**ule (GDR)

- Lines: parallel, single width & pitch
- Contacts: positioned only at predetermined grid points

Scan-D Flip Flop designed with Gridded Design Rules



Source: http://www.tela-inc.com



**Conventional HA-X1 Layout** 

Metal 1



**DSA-Aware HA-X1 Layout** 

Active Region

Contact

M2 vertical direction routing not shown for the sake of clarity

Poly

- Transistor sizes and connections (pin-out) unchanged
- No area penalty

## Random Logic Circuit Patterning: 1-bit Half Adder



## Random Logic Circuit Patterning: 1-bit Half Adder



Scale bar: 200nm



## Random Logic Circuit Patterning: 1-bit Half Adder



DSA heals defects

Scale bar: 200nm

## Random Logic Circuit Patterning: 1-bit Full Adder



Merged templates don't affect DSA holes overlay accuracy and size variation strongly







Green histogram: represent holes in merged templates.

## Random Logic Circuit Patterning: 1-bit Full Adder

Merged templates don't affect DSA holes overlay

#### **Green histogram**: represent holes in merged templates

40%



## **DSA for Contact Hole Patterning**

#### **DSA Evolution**



## 193 nm immersion + DSA =

## **Extension of double-patterning**

## Looking Forward

## Defectivity

- 300 mm wafer, statistical data

EDA tool

- Think OPC, DFM
- Application of DSA must be transparent to designers

## Develop DSA-aware template design rules

- Experiments, modeling

## Graduated Student and Post-Doc



Li-Wen Chang PhD 2010 Currently with Xilinx



Xinyu Bao Post-doc (2008 – 2010) Currently with AMAT



## Collaborators

- Applied Materials (Chris Bencher and team)
- Prof. Subhasish Mitra (Stanford, EE & CS Dept.)

## **Sponsors and Collaborators**















