Lithography for 32nm Half Pitch

Burn J. Lin

TSMC, Inc.

Trust The Leader. Trust TSMC.

July 2006

Introduction

- Water immersion at 1.35 NA can barely support 32nm node at 45nm half pitch.
- Litho technology for 22nm node at 32nm half pitch is not settled.
- We will discuss 4 possibilities here
 - Water immersion and pitch splitting
 - *High-index fluid immersion*
 - *Extreme ultra violet lithography*
 - Multi-e-beam direct write

Trust The Leader. Trust TSMC.

Status of 193nm Immersion Lithography

Trust The Leader. Trust TSMC.

DOF of Contact Holes

0.85NA 0.8σ, OPC 110nm CD ± 11nm Pitches: 220, 400, 600, 2000 nm

193nm dry DOF 186 nm, Elat 8%

> **193nm immersion DOF 293 nm, Elat 8%**

Trust The Leader. Trust TSMC.

65-nm SRAM Immersion Yield from R&D Lot

Better than dry despite higher inter-metal defect level

Trust The Leader. Trust TSMC.

0.4µm² **55-nm SRAM Metal Layer** - Delineated with a 0.85NA Immersion Scanner

Trust The Leader. Trust TSMC.

July 2006

Overlay Accuracy on I250i

tsmc

Trust The Leader. Trust TSMC.

Immersion Defect Reduction

Trust The Leader. Trust TSMC.

July 2006

Cause and Solution of Immersion Defects

July 2006

Wafer Edge Seal Ring

Wafer-Edge Seal Ring and Support during Wafer Load/Unload

July 2006

Immersion Defect Study By Multiple Exposures

39 mJ/cm² Defect count: 85

31.2+7.8 mJ/cm² Defect count: 72

23.4+7.8*2 mJ/cm² Defect count: 46

15.6+7.8*3 mJ/cm² Defect count: 23

7.8*5 mJ/cm² Defect count: 20

Trust The Leader. Trust TSMC.

Accumulated Defect Distribution from 20 Bare-Si Test Wafers

Trust The Leader. Trust TSMC.

Immersion wafer defect map

Champion data shows 3 defects/wafer, defect density 0.006/cm²
Result is repeatable and consistent

Trust The Leader. Trust TSMC.

Defect Distribution in a Wafer Lot

Wafer no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Printing	7	4	3	7	5	10	6	2	1	5	5	5	1	5	1	3	5	5	7	1	1	3	7		4
Bubble		1										1						1		1			1		
Fall on			1	1	1								1				1	1				1	4		
Water Mark								1																	
Pattern																								1	
Failed																								Ι	
Immersion Defects	7	5	4	8	6	10	6	3	1	5	5	6	2	5	1	3	6	7	7	2	1	4	12	1	4

Mean 4.8

3σ **8.5**

Trust The Leader. Trust TSMC.

Extending 193nm Lithography

Trust The Leader. Trust TSMC.

July 2006

Polarization-Dependent and System Stray Lights

PDS from 157nm, and 132nm dry, as well as 193 immersion, 65nm lines, 65nm openings, $\sigma=0.82$, 8% exposure latitude, n_{water}=1.46, n_{resist}=1.75, CD tolerance = ; $\acute{00}$ %, SSL=10%.

Trust The Leader. Trust TSMC.

Trust The Leader. Trust TSMC.

Better End Caps With Double Exposures

Trust The Leader. Trust TSMC.

DOF of AttPSM Using Water Immersion and Double Patterning

tsinc

Trust The Leader. Trust TSMC.

DOF of AltPSM Using High Index Fluid and Single Exposure

Trust The Leader. Trust TSMC.

High-Index Materials

Trust The Leader. Trust TSMC.

July 2006

Impact of Fluid Index

 $n_{quartz} = 1.56$ $n_{resist} = 1.75$

Trust The Leader. Trust TSMC.

Curved Lens Interface to Sustain Hyper NA

- Uneven fluid thickness puts severe demand on optical transmission of fluid.
- High-index lens material is needed to maintain a flat surface for the last element.

Trust The Leader. Trust TSMC.

EUV Lithography

Trust The Leader. Trust TSMC.

July 2006

EUV Illuminator and Imaging Lens

EUV Power At Each Component

resist dosage (mJ/cm2)	1	2	5	10	20	30	50
wattage for 100 wph	0.030	0.060	0.15	0.30	0.60	0.90	1.50
before BW mismatch (W)	0.033	0.066	0.17	0.33	0.66	1.00	1.66
before propag. atten. (W)	0.037	0.074	0.18	0.37	0.74	1.11	1.85
before 6 NI mirrors (W)	0.37	0.75	1.87	3.73	7.47	11.2	18.7
on mask (W)	0.55	1.10	2.75	5.49	11.0	16.5	27.5
before BW mismatch (W)	0.61	1.22	3.05	6.10	12.2	18.3	30.5
before propagation (W)	0.68	1.36	3.39	6.78	13.6	20.3	33.9
before light integrator (W)	1.88	3.77	9.42	18.8	37.7	56.5	94.2
before 2 GI mirrors (W)	2.94	5.89	14.7	29.4	58.9	88.3	147
before 2 NI mirrors (W)	6.36	12.7	31.8	63.6	127	191	318
on collector (W)	9.4	18.7	46.8	93.6	187	281	468
spread into 2pi sr (W)	13.4	26.7	66.9	134	267	401	669
in-band 2pi sr (W) (before debris mitigation)	26.7	53.5	134	267	535	802	1,337

Tradeoff between sensitivity and LWR

Vertical Sensitivity 4X Higher for Reflective Systems

Trust The Leader. Trust TSMC.

DOF of (a) 2% BIM and (b) 6% AttPSM with RPS 22-nm resist line at 55-nm pitch. $\sigma_{out}=0.76$, $\sigma_{in}=0.32$, $CD_{tol}=\pm10\%$, $E_{lat}=8\%$

tsinc

Trust The Leader. Trust TSMC.

Positioning Errors due to Mask Rotation and Translation

Trus The Leader. TSM

EUV Mask Flatness

- Let 1/3 CD be the overlay requirement and 1/3 overlay budget allocated to mask positioning error, $\Delta x' < 2.44$ nm.
- When there is no mask rotation, ∆z_{tran}<46.5 nm. Mask flatness has to be better than 46.5 nm.</p>

When there is mask rotation, Δz_{tran} has to be even smaller.

Summary on EUV Lithography

APPEALS

- k₁=0.59, 0.4 for 32nm, 22nm half pitches.
- Ample DOF
- Simpler OPC
- Evolutional mask writing

CHALLENGES

- Laser power/resist sensitivity/LWR impasse
- Stringent mask spec.
- Absence of pellicle
- Mask inspection and repair
- Contamination and life time of optical elements
- Atomic-precision optics

Cost

Multiple-E-beam Direct Write

Trust The Leader. Trust TSMC.

July 2006

Comparison of 1X EB DW and 4X Mask Writing

1X EB DW

- CDU ±3.2 nm for 32 nm node.
- Does not have to share CDU budget with mask.
- No jigs and jugs.
- Negligible line end shortening.
 - Negligible proximity correction time .

4X Mask Writing

- CDU ±3.2 nm x 4 x 60% = ±7.7 nm.
- MEF=2, CDU< ±3.9 nm
 MEF=4, CDU< ±2 nm
 MEF=10 for line ends.
- Has to control 16nm jigs and jugs and 32nm scattering bars
- Capability at 65 nm is 12 nm.

Trust The Leader. Trust TSMC.

Limits of E-Beam Lithography

Aberration-Free Beam

- Scattering in resist
- Shot noise
- Incident power on resist
- Transverse thermal emission velocities
- Space charge

Aberrated Beam

- Spherical aberration
- Astigmatism
- Chromatic
- Diffraction

Solutions

- Reduce resist thickness
- Reduce resist sensitivity
- Reduce voltage or current
- Use a brighter source
- Avoid crossovers
- Spread out the electrons

Solutions

- Improve lens design/precision
- Improve lens design/precision
- Reduce energy spread
- Use higher energy beam

Trust The Leader. Trust TSMC.

Shot Noise and Incident Power

- Assume 6000 electrons are required in a 32x32nm² area.
- \bigcirc At 40% pattern density, 37µC/cm² resist sensitivity is required.
- \bigcirc For the next node with 22x22nm² area, 79µC/cm².
 - Assume 15 wph and 79μ C/cm²
 - *At 5keV, power incident on resist is 0.14 watt/cm².*
 - *At 100keV, 2.7 watt/cm².*

July 2006

Estimated Cost of 22nm Litho Technologies

	H₂O Imm Single Pass	H₂O Imm Double Pass	EUV 40M/100	EUV 40M/20	EUV 50M/100	EUV 50M/20	MEB DW 20M/10
Expo Tool Cost (M Euro)	30	40	40	40	50	50	20
Track Cost (M JPY)	700	700	700	300	700	300	300
Raw Througput (wph)	120	200	100	20	100	20	15
Exposure cost per layer (US\$)	16	31	27	126	33	156	88
Mask cost per layer (US\$)	80,000	160,000	120,000	120,000	120,000	120,000	N/A
Exposure+materi al per layer (US\$)	24	56	35	134	41	164	93
DW Breakeven Wafers	1,159	4,324	2,069	8	2,308	8	Ref
DW Breakeven Wafers after 5 yrs	19,048	8	38,710	8	48,000	8	Ref

Estimation include tool utilization, availability, rework, installation, utility, laser pulse, resist, HMDS, developer, topcoat(if applicable), BARC(if applicable), and etching(if applicable)

Trust The Leader. Trust TSMC.

July 2006

Conclusions

- Water immersion and pitch splitting can be made to work at the expense of cost and complexity. DOF is not relieved.
- High-index fluid needs high-index lens material whose development is not trivial.
- EUV relieves DOF but still has many problems.
- MEB DW has the potential for low cost but needs much work and innovation.

July 2006

End of Presentation

Trust The Leader. Trust TSMC.

July 2006