

High Throughput Maskless Lithography

Sokudo lithography breakfast forum

July 14th 2010

Bert Jan Kampherbeek, VP Market Development and co-founder

Agenda

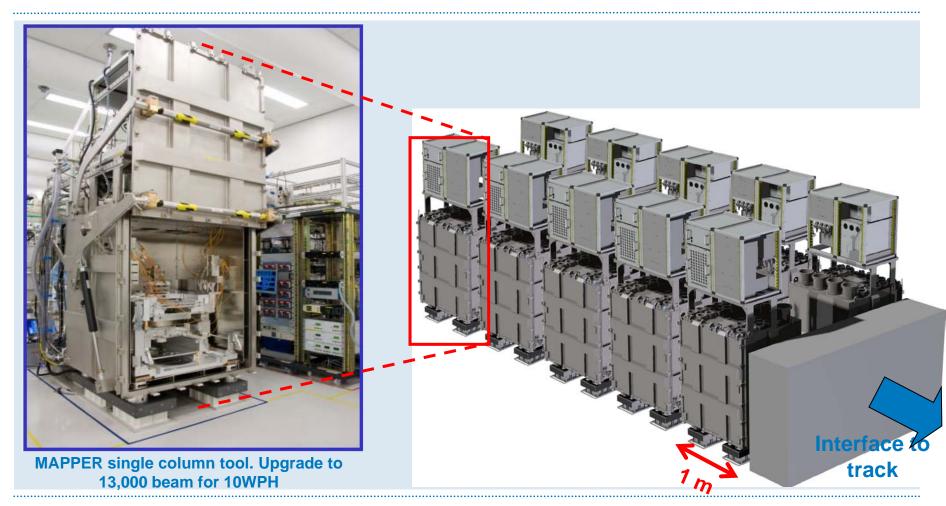
- MAPPER's Objective
- MAPPER's Status
- MAPPER's Roadmap

...

.....

MAPPER's objective: Provide lithography solution for 32 nm hp and beyond

- Provide 10 wph lithography unit in ~ 1 m^2 per unit at a competitive price
- Cluster several 10 wph units together, for example 10 units for 100 wph
- Application of first generation MAPPER manufacturing machines:
 - Contact and via layers, 32 nm hp (22nm logic node)
 - Metal layers, 32 nm hp
 - Cutting / filling layers in double patterning, 16 nm hp (11nm logic node)
- MAPPER solution is extendable to at least:
 - 16 nm hp random patterning @ 10 wph in 1 m²
 - 8 nm hp with pitch division and cut/fill @ 10 wph in 1 m²


MAPPER builds a system with 13,000 parallel electron beams for 10 wph

Electron source	Key numbers 22nm node:	HVM	pre-alpha
Collimator lens	#beams and data channels Spotsize: Beam current: Datarate/channel	13,000 25 nm 13 nA 3.5 Gbs	110 35 nm 0.3 nA 20 MHz
Condensor lens ar	Acceleration voltage	5 kV 30 μC/cm²	5 kV 30 μC/cm ²
Beam Blanker array Beam Stop array Beam Deflector arr Projection lens arr	Pixel size @ nominal dose	10 wph 3.5nm Scanning	0.002 wph 2.25 nm Static

Tool cluster for 100 wph

Application for MAPPER's technology (Logic example)

Assuming four critical metal layers at 22 nm:

	Direct patterning	Cutting	Position w.r.t. ArFi
Gate layer		Х	Complementary
Contact layer	Х		Alternative
Metal 1	Х	Х	Complementary
Via 1	Х		Alternative
Metal 2	Х	Х	Complementary
Via 2	Х		Alternative
Metal 3	Х	Х	Complementary
Via 3	Х		Alternative
Metal 4	Х	Х	Complementary
Via 4	Х		Alternative

Applicable to at least 10 critical layers

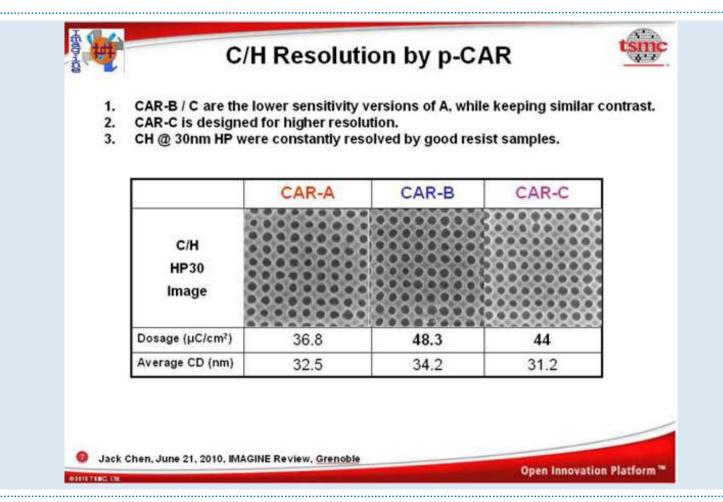
Agenda

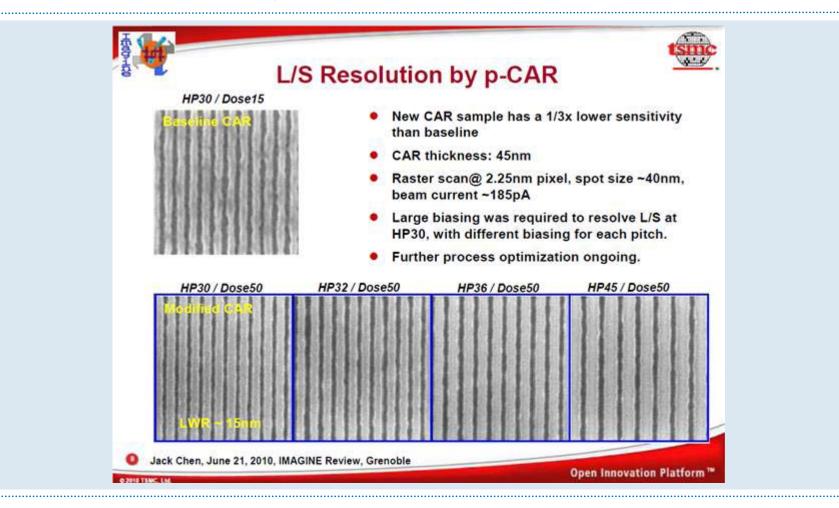
- MAPPER's Objective
- MAPPER's Status
- MAPPER's Roadmap

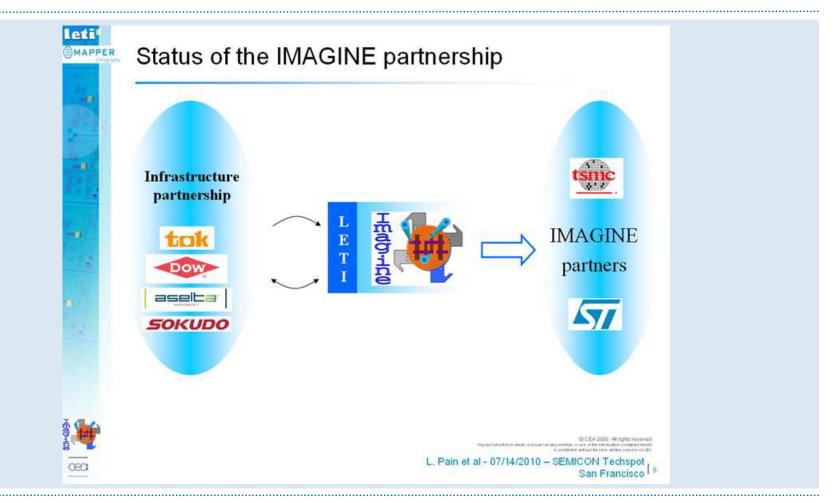
...

Overview current MAPPER machine

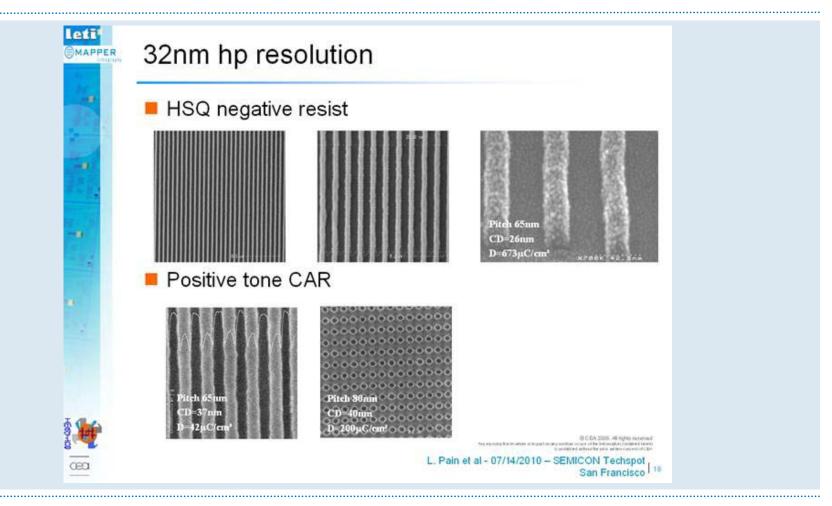
- 1.3 x 1.3 m footprint containing 300 mm wafer stage
- Electron optics is completely in vacuum
 - Source used for CRT application
 - Lens arrays manufactured with MEMS techniques
- Wafer stage is in vacuum
 - Long stroke motors outside shielding
 - Short stroke magnetically shielded
- Data path is in the sub-fab (not in picture)
 - Blanker chip with integrated photodiodes switches electron beams
 - Data path connected through fibers with electron optics

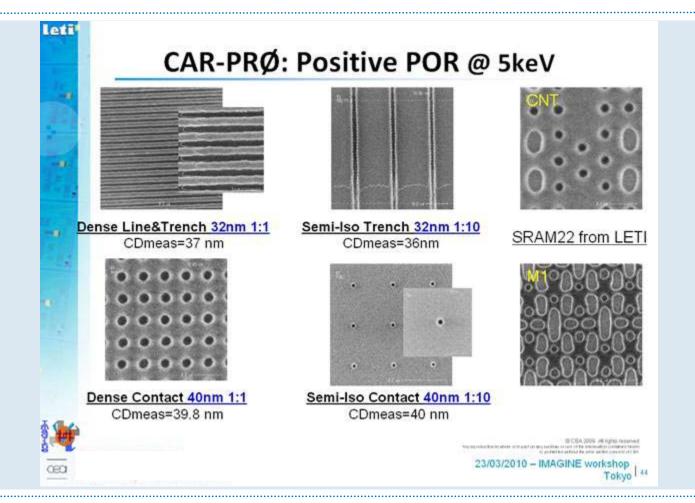

Two tools shipped for enabling infrastructure development


Results of MAPPER prototype tool @ TSMC (1/2)


Results of MAPPER prototype tool @ TSMC (2/2)

Results of MAPPER prototype tool @ CEA-Leti (1/4)


Results of MAPPER prototype tool @ CEA-Leti (2/4)


Results of MAPPER prototype tool @ CEA-Leti (3/4)

Results of MAPPER prototype tool @ CEA-Leti (4/4)

Agenda

- MAPPER's Objective
- MAPPER's Status
- MAPPER's Roadmap

MAPPER Roadmap

Key technical challenges in scaling towards 10 wph and HVM

		Pre-alpha status	HVM requirement	Solution
Data path	Pattern streaming	110 beams	13,000 beams	Bitmap input format and resampling
	Beam blanker	110 x 10 MHz	13,000 x 49 x 70 MHz	Ge photodiode in 65 nm CMOS
Electron Optics	Illumination optics	1.5 x 1.5 mm ²	26 x 26 mm ²	Conventional electrostatic optics
	Projection optics	25 nm spots over 1.5 x 1.5 mm ²	25 nm spots over 26 x 26 mm ²	Yield optimization and mechanical stabilization
	Contamination	40 ppm dose change per wafer (PMMA)	Same + plasma cleaning every ~ 1000 wafers	Plasma cleaning
Wafer positioning	Thermal stability	1 s	360 s, 1 wafer exposure	MAPPER proprietary
	Position stability	50 nm	1 nm	Interferometer control and EMC reductions
Infrastructure	Process (resist)	40 nm in PMMA (60 uC/cm2) and HSQ (100 uc/cm2)	30 nm in 'industrial resist' @ 30 uC/cm2	Test available resists for EUV
	Data preparation	Proximity correction verified by simulation	Proximity correction verified in resist	Leti + TSMC tools to verify assumptions

Conclusions

- MAPPER's technology provides a 10 wph system on a 1 m² footprint at low cost
- MAPPER's technology is an alternative for both direct patterning and pitch splitting with cutting and filling, this makes the technology viable for > 10 critical layers / chip
- MAPPER has installed two machines in the field, one at TSMC and one at CEA Leti
- Both machines, designed for 45 nm hp resolution, resolve ~ 30 nm hp in CAR
- At CEA-Leti a tool assessment and infrastructure program is ongoing: IMAGINE
- Solutions for scaling to 10 wph are available and are scalable for at least 3 generations
- In our opinion there are no fundamental roadblocks left

Thank you